nma Software

Technical Update: VAFS and
the Port to x86-64

Camiel Vanderhoeven

About Me

' ‘
é = .‘.
: ', .‘i,‘
L B : : . g
> i

« Software Engineer at VMS Software, Inc.
» X86 Architecture and C++ Expert
* Working on the x86 port

» Architect and developer of the Avanti and FreeAXP emulators, and of
the Open-Source ES40 emulator

* OpenVMS experience as a contractor in government, banking,
automotive, healthcare, utility, transportation, weather prediction,
steel production, and nuclear industry

« Married, three kids

» Collecting old hardware (www.vaxbarn.com)
» Tinkering with Electronics and FPGAs

« Wine 2

nma Software

VMS Advanced File System

History of VAFS

Started by DEC engineers in Edinburgh, Scotland in 1996
They previously did Spiralog

Designed to run on multiple operating systems (VMS,
Windows NT)

Moved to VMS Engineering (Nashua, NH) in 1998

Developed on and off until 2004
Restarted by VS| in 2016

Need for a new file system

* Volume size limited to 21B
 Performance
 Number of files on disk and in a directory is limited

ODS-2/5 Limitations
32 bit VBN & LBN
512 byte block dependency
Sequential directory format
Square law delete performance
“Careful write” update strategy
Deferred write requires a log for safety
Bitmap based allocation
Linear solution to an exponential problem
Code entropy

Storage Scale

32 bit LBN =21B

>2 1B hard drives have been available for a while

>2 1B logical volumes have been possible for a long time
Any solution requires an on disk structure change

Storage Scale — Market Demands (2004)

Mormon church genealogical database
Projected 50PB several years ago
Medical imaging
1 digitized X-ray = 1GB
1 CAT scan = 100-200GB
Russian Customs
120TB database, 1TB / week log file

Planned video archive requires 2PB

File System Performance

» Typical Unix file system is 10x faster than VMS for open/
close/create/delete

Deferred write (both user data & FS metadata)
Write-ahead logging in current file systems
Shorter code stack — no RMS/XQP layering

Simpler file naming semantics (no logical names)
No shared-everything cluster model
Distributed locking

Thrashing updates

Benefits of VAFS
Performance

* Write behind caching
» Metadata writes to sequential log

"Metadata” being (in ODS-2/5 terms) INDEXF.SYS, *.DIR,
QUOTA.SYS, ACLs

10

Benefits of VAFS
Extensibllity

» Small number of basic concepts
used as building blocks (List Pages,
Streams, Trees)

Benefits of VAFS
Maintainability

» Small number of basic concepts used as
building blocks (List Pages, Streams,
Trees)

* Written in C (no MACRO, no BLISS)

Benefits of VAFS
Scalabillity

» Large disk support (64-bit LBNS)
More files on volume
More files in a directory

Space allocation performance improvement
Recovery time after crash (MOUNT /REBUILD)

VAFS vs. ODS-2/5: Similarities

DCL utilities (COPY, DELETE, EDIT, MOUNT, INIT, etc...)

User-visible interfaces and upper-layer data structures
FCB’s
WCB's
ACP-QIO Interface
XFC
ACL’s
Disk quotas
File ID’s
RMS
File sizes limited to 1TB (RMS 32-bit limitation)
Host-Based Volume Shadowing

14

VAFS vs. ODS-2/5: Differences

* On-disk structure for metadata is completely different!

15

VAFS vs. ODS-2/5: Differences

On-disk structure for metadata is completely different!

All metadata writes bounce through a recovery log before being written to
destination LBN's

16

VAFS vs. ODS-2/5: Differences

* On-disk structure for metadata is completely different!

* All metadata writes bounce through a recovery log before being written to
destination LBN's

* File deletion: VAFS moves “deleted” files to [SYSDELETE], then deleted in
background. Allows deletion of large files to be broken up into smaller atomic
transactions.

17

VAFS vs. ODS-2/5: Differences

On-disk structure for metadata is completely different!

All metadata writes bounce through a recovery log before being written to
destination LBN's

File deletion: VAFS moves “deleted” files to [SYSDELETE], then deleted in
background. Allows deletion of large files to be broken up into smaller atomic
transactions.

[SYSHIDDEN]: All files must be in a directory

18

VAFS vs. ODS-2/5: Differences

On-disk structure for metadata is completely different!

All metadata writes bounce through a recovery log before being written to
destination LBN's

File deletion: VAFS moves “deleted” files to [SYSDELETE], then deleted in
background. Allows deletion of large files to be broken up into smaller atomic
transactions.

[SYSHIDDEN]: All files must be in a directory

File structure metadata is organized and stored outside of file system itself
(no INDEXF.SYS, QUOTA.SYS, efc. ...)

19

VAFS vs. ODS-2/5: Differences

On-disk structure for metadata is completely different!
All metadata writes bounce through a recovery log before being written to
destination LBN's

File deletion: VAFS moves “deleted” files to [SYSDELETE], then deleted in
background. Allows deletion of large files to be broken up into smaller atomic

transactions.

[SYSHIDDEN]: All files must be in a directory

File structure metadata is organized and stored outside of file system itself
(no INDEXF.SYS, QUOTA.SYS, etc. ...)

VAFS uses “disk pages” of 2048 bytes as unit of operation (may be increased
to 4096)

20

VAFS vs. ODS-2/5: Differences

On-disk structure for metadata is completely different!

All metadata writes bounce through a recovery log before being written to
destination LBN's

File deletion: VAFS moves “deleted” files to [SYSDELETE], then deleted in
background. Allows deletion of large files to be broken up into smaller atomic
transactions.

[SYSHIDDEN]: All files must be in a directory

File structure metadata is organized and stored outside of file system itself
(no INDEXF.SYS, QUOTA.SYS, efc. ...)

VAFS uses “disk pages” of 2048 bytes as unit of operation (may be increased
to 4096)

No volume sets, bad block handling, geometry sensitivity, placed allocation

21

VAFS vs. ODS-2/5: Differences

On-disk structure for metadata is completely different!

All metadata writes bounce through a recovery log before being written to
destination LBN's

File deletion: VAFS moves “deleted” files to [SYSDELETE], then deleted in
background. Allows deletion of large files to be broken up into smaller atomic
transactions.

[SYSHIDDEN]: All files must be in a directory

File structure metadata is organized and stored outside of file system itself
(no INDEXF.SYS, QUOTA.SYS, etc. ...)

VAFS uses “disk pages” of 2048 bytes as unit of operation (may be increased
to 4096)

No volume sets, bad block handling, geometry sensitivity, placed allocation
Cannot be a system disk on |A64 or Alpha (yes on X86)

22

A newly-initialized VAFS disk

Directory 1DGA220:[0,0]

000000 .DIR;1 0/0
SYSDELETE.DIR;1 0/0
SYSHIDDEN.DIR;1 0/0
SYSQUOTA.DIR;1 0/0
SYSRECOVERY.DIR; 1 0/0

31-JUL-2017
31-JUL-2017
31-JUL-2017
31-JUL-2017
31-JUL-2017

11:45:03.40
11:45:03.31
11:45:03.40
11:45:03.31
11:45:03.31

Note the lack of ODS-2/5 style metadata files

23

(RWED, RWED, RE, E)
(RWED, RWED, RWED, RWED)
(RWE, RWE, RE,)
(RWED, RWED, RWED, RWED)
(RWED, RWED, RWED, RWED)

VAFS: How it works

* VAFS is log-based, not log-structured (Spiralog)

» All file system metadata writes are first written to a
transaction log before moved to destination LBNs

* Metadata encapsulated in building block data structures like
» List Pages
e Streams
* [rees
» Key-list value pairs

24

Disk Page

ldent Info

LSN

Swap Area

LSN

LSN

2KB

List Pages

Ordered array of key-length value items. Most VAFS
metadata is stored in LIST PAGES

LIST PAGES have SLOTS which contain STREAMS
Aggregated into TREES; leaf pages store the actual data
Located by index entry in a parent list page

Examples of LIST PAGES as TREES

» Attributes (ODS-2/5 file header == VAFS tree)

* Directories

* Extent maps

26

List Page

Attribute
Value
Pairs

Header

Fixed
Size Key
Prefix

Key
Remainder
& Value

Streams

» Direct: stored in a List Page as an attribute value ina SLOT

» Mapped: stored in List Pages via an extent tree. Root of the
tree iIs an attribute value

» Examples of streams
* [ndex file
« Storage Bitmap
* FID bitmap

* Recovery log

28

Tree

29

Examples of Trees

Directories

Storage Bitmap Index
FID Bitmap Index
Storage Allocation Cache
FID allocation Cache

30

Directory

Special file type
Directory content is a special file attribute, stored as a tree
Directory entry

Key = file name, normalized Unicode + case flags
Value = file ID

Bitmap

Used to allocate file IDs and free blocks
Organized in page-size segments
Extensible tree structure

How do we make sense of this stuff?

$ DUMP/XFS is the answer (without it, we’d be doomed!)

33

How do we make sense of this stuff?

$ DUMP/XFS is the answer (without it, we’d be doomed!)

Thanks, Andy!

34

VAFS: Let’s get started

$ INIT <device name> /STRUCTURE = 6 <label>

* Writes an ODS-2/5-compatible home block with a tiny bit of
ODS-6 info

* Does not write much of the file system infrastructure

$ MOUNT <device name> <label>

* "First Mount” of a VAFS volume does most of the
Initialization

» Key structures include Home Page, Recovery Log, storage
bitmap

35

VAFS Home Page

$ DUMP/XFS /BLOCK= (START:320,COUNT:4) <device>

XFS Metadata Page
XFS page header

Page size (blocks): 4 used, 4 allocated

Page address: LBN 320

Page state: AllocSeq = 503, UpdateSeq = 30, LSN = 57
Parent file number: 5

Page log flags: file lock

XFS list page header

Page type: attributes

Page flags: <none specified>

Structure version: 1/1 (major/minor)

List page size: 1984 bytes, 12 slots in use, O deleted
Free space (bytes): 48 free on top, O deleted

36

Index File Info

Formatted List Page Slots
List Page Slot @, flags: <none specified>
Stream type: unspecified

8 byte key: (1) - volume attributes (#define XFS_ATTR VOLUME 1 /* volume attributes */)

208 byte value:

00000000 0VVVVVOO VPPV 0VVVV8VO VVVVOBVO 0V0VV200 E944A850 01020101P De.....cviiiiiivnrnrnnnnns 000000
00000000 VPV 0VVVVVVY VYV 0VVVVVVO VBBV VVVVVVVY BBVcviveeeitreeennnnoceas 000020
00000000 00500000 0OVVVVVOY VBV 0VVVVVVOY VBBV VVVVVVVY BBBBOOOOccviveeieeennsns P..... 000040
00000000 VY040 00VVVVVY VV500000 VVVVVVVY VB500000 VVVVVVVYY 0B500000 ..P....... P....... P..... @....... 000060
OOB1lED7A E944CF60 00000000 00000D80 0000OD8O 000VVVVO VOO VVPOPOLO @.......coivrveeeroncens "IDézit. 000080
00000000 VPV VVVVVVOY VBV 0VVVVVVO VBBV VOVVVVVY BBVcvvieeettteeennnnoceas 0000A0

00000000 0PV OVVVVOOY BBVcvviieeettreecnnnnnccns 0000Co

List Page Slot 1, flags: mapped
Stream type: metadata
8 byte key: (2) - index file stream (#define XFS_ATTR _INDEX 2 /* index file stream .. */)
Formatted extent list on following page

List Page Slot 2, flags: <none specified>

Stream type: unspecified

8 byte key: (3) - index file stream info (#define XFS ATTR _INDEX INFO 3 /* .. and stream attributes */)
Allocated length: 131072 (0000000000020000) bytes (256 blocks)

Data length: 131072 (0000000000020000) bytes (256 blocks)

Highest written: 0 (0000000000000000) bytes (0 blocks)

37

nma Software

Port to X86-64

Agenda

— 2014: Dusted off the “Porting Play Book”
— 2015: Described the basic plan and a few details
— 2016: Added more plan details and described the beginnings of implementation

— Focus on implementation progress

— What was/is difficult?
— Work progress and what remains

39

Boot Contest

— Boot OpenVMS
— Login
— Use DIR command to get a directory listing

— To participate, send email to Sue Skonetski and fill in a survey
— Guidance: Q1 2018

40

System

ture-Specific Work

Archite

Boot Manager

» Select Console Mode Primary Kernel ~ SYSBOOT &=
. Analyze Devices Data Structures

* Auto-Action or Enter Command Loop SYSBOOT

« Boot System via Memory Disk Dump Kernel Data Structures

* Primary Kernel

 Dump Kernel
« Enter Console Services SYS$MD.DSK

What is MemoryDisk?

Primary Kernel

» ODS-5 container file with a 3-partition disk image Memory
* Built and maintained by OpenVMS utilities
» Contains kernel files with SYMLINKS to active system

» Shared by Primary Kernel and Dump Kernel . y |
- Located on any accessible device, including network ump nerne
Memory

Status: In use on multiple platforms.

42

MESSAGES: [&/)PROGRESS [&/) sYSBOOT [JEXECINIT [) SYSINIT [) VERBOSE :

BOOT MODES: (WA DETAIL> [JXLDELTA> [)XDELTA> [)SYSBOOT> [INETBOOT> ,
4 L
AUTOACTION: HALT . ° >
BOOT RELATED COMMANDS:
BOOT {device> <{sysroot)> <bootflags> <’ Comment ln quotes, max 64 characters")
8T - Boots with default device, system root and boot flags.
T DKAl1G@ - Boots DKA1l wlth default system root and boot flags.
BOOT DKAI%S g - Boots DKA1l with system root and default boot f
BOOT DKA1l 20000 - Boots DKA1l with system root and boot flags
BOOT #3 - Boots the third option in the Boot Options List. See OPTIONS.
FLAGS <value> - Show / Set (value) MS Boot Flags. Expressed in hexidecimal.
ROOT (value) - Show 7 Set <{value> VMS System Root. Expressed in hexidecimal.
OPTIONS - Displays the VMS Boot Options List showing the last ten unique boot commands.
1 - |f the file: VMS OPTS.TXT exists, it will be used as the option list.
62T?AETION - HALT BOOT or RESTART. Automatic ac}ion }o take when BootManager is invoked.
VIiC - Lists VMS Boot Devices and their UEFI Fi System equivalents.

J MESSAGE RELATED COMMANDS:
gsgggg§s nables g$g§0Progrcss mcssosgs NOPRO to disable.

- Enables messages disable.
§§E?INIT - Enables gxgc messages. XEC to disable.
NIT - Enables messages NO YSI to disable.
VERBOSE - Enables Extcndcd boot messages. NOVERB to disable.
MODE RELATED COMMANDS:
QETAI - Enables deﬁatled BOOTMGR) conversa ion. NODET to diss 5
DEL A - Enables ger and sets SBOOT breakpolnt to disable.
Xegb - Enables ggén? o XDELTA debug axegéet and itlal breakpoint NOXDE to disable.
S ROMPT - Enables conversat ion. to isa
TBOOT - Enab e NETBOO conversation. NONET 6 isable
- Enables the VM Crash Dump Kerne NODUMP to dlsable.
BB“gPEVég - ts or Shows the V Bmp Device.
LA {value) ~ / Set <value> VHS Kernel Boot Flags. Expressed in hexidecimal.

DIAGNOSTIC COMMANDS:
DEVELOPER

Enables VSI Developer Mode. NODEVEL to disable. Function varies.
Show PCI Device list.
Show USB Device list.

ow NETHORK Device list.

ow APIC (Interrupt Controllers) list. ﬁhnq

SMBIOS (Syst Ma
Eagbles hlz: §Tagng: fg:n 8ak8H to disable.

nables Hemory nfig diagnostics. 58" M to disable.
nables Device nfig diagnostics. DEV to disable.
Enables Keyboard Service iagnostlcs.

QURAS
P=OF
%

(PAGE?

Copyright 2017 VMS Software Inc., Bolton Massachusetts, USA

MESSAGES: [A/)PROGRESS [&/) sYSBOOT [JEXECINIT [) SYSINIT [] VERBOSE
BOOT MODES: (WA DETAIL> [JXLDELTA> [)XDELTA> [)SYSBOOT> [INETBOOT>

AUTOACTION: HALT . - -

ZNMS_BOOTMGR~I-REVISION: X9.0-0 Build 9 - Oct 9 2017

ENABLED: Pro ress messagses. '
ENABLED: ? Manager interaction. {

ZVMS_BOOTMGR~1~ DEVICE Configuring System Devices...
+ c work Devi cs (Protocol UNB I)
e System evlces

+ 12 Block I0 Devices

/VMS BOOTMGR I DEVICE Confezurina Peripheral Devices...
annlni s Ran BE
Added 1 additlonal I Devices dlscovered by bus scan.

Configured 14 PCl/e Devices.
Assigning VM evice Names.
Asslgnlng ont roller Letters
saigntng vng Unit Num

Ass igning Network evlces
Retrieving Device Information..
BOOTMGR DEVICE: DNA@ (fs©)
BO0TMGR> PAGE
ENABLED PAGE scrolling mode.
BOOTMGR)> B
BOOT DESTINATION DEVICE: DNAO (fsQ) VMSUSBSTICK

DEFAULT BOOT COMMAND: BOOT DNAQ © 01000024

G"
0/,

3\

ZVMS_BOOTMGR-H-MAIN, DISABLED Crash Dumps.

LOAD PATH:

PciRoot (@xQ)Pci(Ox1D, GNO)/USB(OxI GNO)/USB(ON4 Oxe)/HD(l GPT, 40985391-90F8-11E7-BSEF -9C8ETFI93SADS6, Ox 10CEQ, Ox3ESCQ)
ZVMS_BOOTMGR~-I~-MAIN, Allocating Kernel Memory.
ADDRESS SPACE ALLOCATION:

MAIN KERNEL SYSBOOT: PA Floor: in FFFF, Size:
MAIN KERNEL HHRPB: PA Floor: lng 8: FFFF. Size: 8:88?88888 {§=g;, Actual: Ox00Q5S800Q

MEMORYDISK: PA Floor: Ox01400000, Ceiling: Ox113FFFFF, Size: Ox10000000 (256MB)

KERNEL BASE STRUCTURE: PA Floor: @Ox00200000, Ceiling: OxOQ2FFFFF
..t MAIN KERNEL HHRP PA: @x00800000

Copyright 2017 VMS Software Inc., Bolton Massachusetts, USA

snnssisiA VSI OpenVMS (tm) x86-694 Operator Console “AiiArzAx
Welcome to VSI OpgnVHS

Parameter passed rom the boot manager to SYSBOOT:
HHRPB : Ox 00000000 . PO8Y0A0 size 0000000 .

Kﬁv lo?aglons and slzes R O 001
eroe ase DP200N0A . PAZ200P0 size 4155555 % %0 %%% % %)
ConloTable: 0x00000000 D93CSF 18

m Table 833%82%8
3%55 Disk: 0<0000000¢ B l400000 =12 Bx00000900: S0a00000
ry . size
suﬁp address Oxegg?gggga
WRPB f ag; addrcss Ox 15048
ntering o$sys oot
Entering boo$init_swr b
Leaving boo$init_swrp
Entoring boo!chcckout -1
eavlna checkout ?u
ZSYSBOOT - MEMDISKMO N Boot memory disk mounted
#SYSBOOT~-1I-LOADPARAM Load1n9 parameter file X86 _64VMSSYS. PAR
Entcrlng bfs’opcn file
eavin? s open file
Parameter le is 11264 bytes long (22 blocks)
boo$loodBootf11e loading paramter file
boo$usefile: Parameter flle read in successfull
#2SYSBOOT~I<LOADFILE, Loaded file [SYSG SYSEXE IX86_64VMSSYS. PAR
#SYSBOOT~-1~ MEMDISKDISMOUNT Boot memory disk dismounted
Entertng booSinit_memalc
nterlng bootinlt _memory_variables
eaving boot$init_memory_variables
"tf”"ﬁ Do e TN 200000 400O3FFF © 21FDFFFFF
Bes mory ra
minbitPEN 20200 maxbitPFN 40003. minPEN O, maxPEN 21FDFF. memsize 1F9884
Lcavlng boo‘calc ax.pfn
ntertna boo ui _page tables
MAXPHYA bits, Max linear address is 48 bits
Entering booSfind free_pfns req_pages 1
Leaving boo‘f nd Treerp
PT space addr 800?00000000
Leaving boo ull tables
ntering bo ? loc tion_bitmap
nterlng nd free_p ns req_pages 4
eaving oo 1nd _free_pfns
nterlng boo$ check va
Lcavlng oo$chec
#ZSYSBOOT~1~ ALLOCMIPBLT Allocat ion bltmag built
cavln boo‘bulld allocatlon_bltnlp and boo$init_memalc
ress ter to continue
rcatlng the PFN memory map
En:ering boo:create_pfn memory _map
Entering sort_s f n_map
count 19FE80. oy sent 9884 mem_limit FFFFFFFFFEFFFFOO
eaving sort ‘syi d_pf n_map
avin reate _memor ap
YSBOOT - ?OPENHA -BFN memorz-:ap created
Ereattng the S spase page tables
ntering oSinl _space
6ov1n9 boo$init 1 _space
space page tables created
emapping monory disk to S$2 space
nterlng boo$map_memorydisk
<gugg isk pa = 1400000, size = 1000000Q bytes

Always Boot from Memory Disk — Why?

 Why did we undertake this and project?
- Increase maintainabillity - one boot method regardless of source device
- Eliminate writing of OpenVMS boot drivers
- Eliminate modifying (or replacing) primitive file system
« QOther Factors
— Take advantage of UEFI capabilities, especially /0O
— This opportunity may never exist again

Status: 95+% done, only final details of booting into a cluster remain

46

Dump Kernel

 MemoryDisk dictated the need for a new way to handle crash dump
* User-mode program with some kernel-mode routines

* |t “replaces” STARTUP.COM in the standard boot sequence

* Everything the Dump Kernel needs is in the MemoryDisk

* Writes raw/compressed full/selective dumps to system disk or DOSD

Status: We have debugged everything we can on ltanium and will do final
verification work on x86 when enough of OpenVMS is running.

47

$ U Displays time, then $CMKRNL & ACCVIO

Initiating crash at 28-AUG-2017 13:00:52.98...

%IPB-I-DUMPBOOT, Booting the Crash Dump Kernel

kxkk OnenyMS IA64 Operating System XEGO-T?Y - BUGCHECK *kx

*¥ Bugcheck code = 000003C4: SSRYEXCEPT, Unexpected system service exceptlon
**¥ Crash CPU: 00000000 Primary CPU: 00000000 Nocde Name: POTATO
¥ Highest CPU number: 00000003

¥ Active CPUs: 00000000,0000000F

¥ Current Process: "CSYSTEM"

** Current PSE ID: goooooot

*k Tmage Name: $1$0CA10; [OMMON . 1[SYSMGRICRASH_TEST . EXE; 3

¥ Crash Time: 28-AUG-2017 13:00:52.98 New

Error log details

*k Oumping error logs to the system disk (1DGA10:)
¥ Error logs dumped to $1$0GA10: [SYSO,SYSEXE [SYS$ERRLOG, DMP

% Oumping memory to the system disk ($1$0GA10:)

: : , Starting timestamp
ek Starting compressed selective memory dump at R8-AUG-2017 13:00:58, 41 |+

¥k System space, key processes, and key globhal pages have been dumped.,
¥ Now dumplng remaining processes and global pages...

** Memory dumped to $1$0GA10:[SYS0.SYSEXE]SYSDUMP . DMP

Ending timestamp

¥k Completed compressed selective memory dump at f28-AUG-2017 13:01:16,02) *kk
% Time to lnitlate memory dump:

¥ Time to write memory dump:

*xkk Primary HALTED with code HWRPB_HALT$K_WARM_REBOOT Statistics

48

Memory Management

» Challenges
— OpenVMS-style page protections for kernel, exec, super, user
— Designing for 4-level and 5-level paging
— 2MB and 1GB pages
— Change to traditional paging mechanism and access
» Status
— SYSBOOT: done (compiled and linked in x-build)
» (Get memory descriptors from the boot manager
» Set up paging mechanisms
— Next up:
» Create general page management routines
» Fix code that manages pages on their own

49

Everything you know about
memory management is the
same

your unprivileged application knows

Almost everything yeu-knrew about
memory management is the

Sdlmne

51

51

Software Interrupt Services

* New Data Structures OpenVMS
. MTPR/ MFPR expectations
 EXceptions

« System Service Dispatching
* Interrupts

 ASTs

* Mode Switching

» Context Switching
 Performance Builds

Platform
features

52

OpenVMS Assumes Things...

 VAX/VMS was designed with the VAX hardware architecture.
 Where desirable, to satisfy the OS’ needs.
* A lot of OS code was written to these hardware features.

53

What are these Assumptions?

* 4 hardware privilege modes

» Each with different page protections
* And with their own stack

» 32 Interrupt Priority Levels

* 16 for Hardware Interrupts

» 16 for Software Interrupts

« Software Interrupts are triggered when IPL falls below the
associated IPL

* Asynchronous Software Trap (AST) associated with each mode, triggered
when |IPL falls below ASTDEL (equally or less privileged mode)

 The hardware provides instructions for queue operations
* The hardware provides a set of architecturally defined Internal Processor
Registers (IPRs) - vim|s

How does Alpha meet these Assumptions?

* Alphais a very Architecture
* But OpenVMS was definitely in the Alpha Architecture designers’ minds
 The 4 modes OpenVMS needs are part of the basic Alpha architecture

 PALcode, code supplied by firmware that has than even
kernel mode, and which Is , provides the to
iImplement OS specific features

* |PLs, Software Interrupts and ASTs are implemented through a combination of
hardware support and PALcode

* Atomic queue instructions are provided by PALcode

 PALcode also provides the mapping from IPRs as expected by OpenVMS to
the hardware implementation’s IPRs

95

So how about Itanium Hardware?

* Very different story, Itanium’s design was finished OpenVMS as an OS
was considered

» Offers the 4 modes OpenVMS needs

 The TPR (Task Priority Register) provides an IPL-like mechamsm for hardware
interrupts only . _— _

 No compatible software interrupt mechanism or ASTs
* No atomic queue instructions
* No OpenVMS-compatible IPRs

56

Hence, SWIS

« SWIS (Software Interrupt Services) is a piece of that is
Involved In .

« SWIS implements the software interrupt and AST support required by
OpenVMS, as available.

* Other code in the OS (with some special support from the SWIS code to
ensure atomicity) provides atomic queue instructions

* A combination of code in SWIS and other code in the OS provides OpenVMS-
compatible IPRs

« SWIS makes the ltanium CPU to the rest of the OS

S57

Bridge Function

SWIS bridges the gap between the assumptions made by the rest of the OS to
the features supported by the hardware

SWIS on X86-64

 Because a exists between OpenVMS’ assumptions and the
hardware-provided features, SWIS will be ported to X86-64.

* Ported means mostly re-written here, as the
between ltanium and X86-64.

« On X86-64, SWIS will have to do more, as the X86-64 architecture does
provide the 4 mode support OpenVMS needs.

» Because of this, SWIS on X86 will not only be active when transitioning from
an inner mode to an outer mode, but when transitioning from an outer
mode to an inner mode.

» Also because of this, SWIS now needs to become involved in
(in a supporting role).
» There's good news too: the Itanium architecture has some features that are
very complex to manage (think RSE), that are iIn X86-64.

Swis on X86-64

* 4 Modes, different page protections, » 2 rings, different page protections,
separate stacks separate stacks
32 IPLs (16 h/w, 16 s/w) * 14 hardware TPR’s, mask off
hardware interrupts in groups of 16
« Software interrupts tied to IPLs » Software interrupts unaffected by
TPR’s. No IPL’s
» Per-process, per-mode ASTs, - No AST-like concept at all
delivered when below ASTDEL
* Atomic queue instructions » No atomic queue instructions

» VAX-like IPRs » X36-64 IPRs

60

Design Phase

SWIS for X86-64 was designed over a period of 1.5 years (1 year part-time, 0.5
years full-time), in several phases:

design (not detailed enough to base implementation on)
» Detailed design for dispatching
» Detailed design for handling
» Detailed design for
» Detailed design for

61

Design Review Phase

* |n-depth 3-day review between myself and
Burns Fisher

* This one turned up a design flaw that could)
have enabled unprivileged code to bring down the system

 Complete walk-through and review in one of our weekly X86-64 engineering
meetings

* A lot of the content in this presentation is based on the slides | prepared for
that walk-through

62

Implementation Phase

Implementation started in May 2017, broken down into different parts:

* Quick and Dirty Exception Handling for early code that needs something
» Data Structure Definitions

 VAX/Alpha IPRs 5
 Hardware Interrupts and Exceptions L
» System Services |
» Software Interrupts

 ASTs

 |nitialization <:||

* Processes and Scheduling

k.

63

2 SYSTEM PRIMITIVES execlet builds

« Compatibility build, works on any x86-64 CPU we support

* Performance builds, optimized for CPUs that have support for one or more of
the following:

1. Address Space Numbers (PCIDs) in TLB

2. RDGSBASE instruction

3. XSAVES/XRSTORS instructions for saving/restoring extended (“floating point”) registers
(MMX, SSE, AVX)

» Highest Performance build targets Intel processors made after 2013 (lvy
Bridge and beyond).

64

SWIS Data Structure

* One per CPU, stays with CPU over the lifetime of the system
* Only CPU-specific datastructure that can be found directly

» Has a different virtual address for each CPU

* Pointed to by GS segment register

65

Mode “Components”

* Processor ring (O for K, 3 for ESU)

» Stack pointer

* Address Space Number

 Page Table Base

* Current mode as recorded in the SWIS data structure

A mode is “canonical” when all the above are in agreement
« SWIS should be the only code that ever sees non-canonical modes

* We prototyped this on ltanium
66

Basics of Mode Switching

1.

Interrupt or SYSCALL instruction
Switches CS and SS to ring O

2. Switches to the kernel-mode stack (interrupt only, not SYSCALL)
3. Disables interrupts

1.

Get fully into kernel mode (ASN, PTBR, stack, DS, ES)
Going in? -> Build return frame on stack

Going out? -> Deliver Swints and ASTs as needed

Get into destination mode (ASN, PTBR, stack, DS, ES)

IRET or SYSRET instruction
Switches CS and SS to ring 3

2. Switches to the outer-mode stack (IRET only, not SYSRET)
3. Enables interrupts 67

XDELTA-lite (XLDELTA) Debugger

- Started from scratch, written in C and a little assembler

- Follows XDELTA syntax
- Linked into SYSBOOT

— Set and proceed from breakpoints

— Examine and deposit register

— Examine and deposit memory location
— Examine multiple instructions

— Examine instruction and set breakpoint
— List breakpoints

Status: In use, may add additional capabilities

68

Objects & Images

age Building’and Execution

Calling Standard

Started with AMD-64 runtime conventions
Deviated only where absolutely necessary
Problem #1
— Standard assumes all within-the-image addressing can be done PC-relative
— OpenVMS Image Activator may change relative distances between image sections
— Solution: Attach a linkage table to each code segment and address all data through it
Problem #2
— Need to preserve 32b addressability when procedures are in P2 or S2
— Solution: Create 32b-addressable stubs that forward calls to the procedures
Status
— Satisfies all current development needs
— Remaining work: address unwinding, debugger, and translated code issues as they arise

70

Alpha-to-x86 Dynamic Binary Translator

Directly execute an Alpha image on x86
No restrictions in terms of compiler version or operating system version of source
Does not support privileged code translation
Status: working prototype on x86 linux
— Using selected pieces of simh as a basis for emulation
— Running simple Alpha images on x86 linux
— Temporary code to emulate
* OpenVMS loader and image activator
» some OpenVMS library routines
— BASIC, C, COBOL, FORTRAN, and PASCAL images have been translated

— With no optimization work, performance is about equal to an Alpha ES47

71

Dynamic Binary Translator Flow

e First execution Dhrystone: microseconds/run
— Runs in emulation mode + Native 0.2
— Creates topology file : Egﬁlsal';etgd 13_';
— Quite slow
» Each subsequent execution
— Reads topology file Next Steps
— Generates LLVM IR + Synchronize topology updates (multiple users)
_ Runs natively sy arpoboyfe

— Updates topology file, if needed * Improve performance .
 Translate a VESTed image — looks to be difficult

72

Cross Build

— Builds done roughly weekly

— Let the build tell us what we do not already know

— Building everything

— At some point will ignore components not needed for First Boot

— BLISS, C, XMACRO, assembler
— Linker, Librarian, Analyze, SDL

— Concentrating on INIT through ASSEM phases
— Reducing "noise” with each iteration

73

What’s Different ?

FAQ: What are the visible differences that will come with x86-64 OpenVMS?
» Applications: none that we know of now
* Interactive users and command procedures: none that we know of now

» System managers: new utility to update the MemoryDisk

74

N

To learn more please contact us:
vmssoftware.com
iInfo@vmssoftware.com
+1.978.451.0110

75

