
1

November 2017

Technical Update: VAFS and
the Port to x86-64

Camiel Vanderhoeven

About Me
Currently (2015 -)
•  Software Engineer at VMS Software, Inc.
•  X86 Architecture and C++ Expert
•  Working on the x86 port
Previously
•  Architect and developer of the Avanti and FreeAXP emulators, and of

the Open-Source ES40 emulator
•  OpenVMS experience as a contractor in government, banking,

automotive, healthcare, utility, transportation, weather prediction,
steel production, and nuclear industry

Personal
•  Married, three kids
•  Collecting old hardware (www.vaxbarn.com)
•  Tinkering with Electronics and FPGAs
•  Wine 2

3

VMS Advanced File System

History of VAFS
•  Started by DEC engineers in Edinburgh, Scotland in 1996

 They previously did Spiralog
•  Designed to run on multiple operating systems (VMS,

 Windows NT)
•  Moved to VMS Engineering (Nashua, NH) in 1998
•  Developed on and off until 2004
•  Restarted by VSI in 2016

4

Need for a new file system

•  Volume size limited to 2TB
•  Performance
•  Number of files on disk and in a directory is limited

5

6

ODS-2/5 Limitations
•  32 bit VBN & LBN
•  512 byte block dependency
•  Sequential directory format
− Square law delete performance

•  “Careful write” update strategy
− Deferred write requires a log for safety

•  Bitmap based allocation
− Linear solution to an exponential problem

•  Code entropy

7

Storage Scale

•  32 bit LBN = 2TB
•  >2TB hard drives have been available for a while
•  >2TB logical volumes have been possible for a long time
•  Any solution requires an on disk structure change

8

Storage Scale – Market Demands (2004)
•  Mormon church genealogical database
− Projected 50PB several years ago

•  Medical imaging
− 1 digitized X-ray = 1GB
− 1 CAT scan = 100-200GB

•  Russian Customs
− 120TB database, 1TB / week log file
− Planned video archive requires 2PB

9

File System Performance

• Typical Unix file system is 10x faster than VMS for open/
close/create/delete

•  Deferred write (both user data & FS metadata)
•  Write-ahead logging in current file systems
•  Shorter code stack – no RMS/XQP layering
•  Simpler file naming semantics (no logical names)
•  No shared-everything cluster model
− Distributed locking
− Thrashing updates

 Benefits of VAFS
Performance

•  Write behind caching
•  Metadata writes to sequential log

 “Metadata” being (in ODS-2/5 terms) INDEXF.SYS, *.DIR,
QUOTA.SYS, ACLs

10

 Benefits of VAFS
Extensibility

•  Small number of basic concepts

used as building blocks (List Pages,
Streams, Trees)

11

 Benefits of VAFS
Maintainability

•  Small number of basic concepts used as

building blocks (List Pages, Streams,
Trees)

•  Written in C (no MACRO, no BLISS)

12

 Benefits of VAFS
Scalability

•  Large disk support (64-bit LBNs)
•  More files on volume
•  More files in a directory
•  Space allocation performance improvement
•  Recovery time after crash (MOUNT /REBUILD)

13

 VAFS vs. ODS-2/5: Similarities

 DCL utilities (COPY, DELETE, EDIT, MOUNT, INIT, etc…)

 User-visible interfaces and upper-layer data structures
•  FCB’s
•  WCB’s
•  ACP-QIO Interface
•  XFC
•  ACL’s
•  Disk quotas
•  File ID’s
•  RMS
•  File sizes limited to 1TB (RMS 32-bit limitation)
•  Host-Based Volume Shadowing

14

 VAFS vs. ODS-2/5: Differences
•  On-disk structure for metadata is completely different!

15

 VAFS vs. ODS-2/5: Differences
•  On-disk structure for metadata is completely different!
•  All metadata writes bounce through a recovery log before being written to

destination LBN’s

16

 VAFS vs. ODS-2/5: Differences
•  On-disk structure for metadata is completely different!
•  All metadata writes bounce through a recovery log before being written to

destination LBN’s
•  File deletion: VAFS moves “deleted” files to [SYSDELETE], then deleted in

background. Allows deletion of large files to be broken up into smaller atomic
transactions.

17

 VAFS vs. ODS-2/5: Differences
•  On-disk structure for metadata is completely different!
•  All metadata writes bounce through a recovery log before being written to

destination LBN’s
•  File deletion: VAFS moves “deleted” files to [SYSDELETE], then deleted in

background. Allows deletion of large files to be broken up into smaller atomic
transactions.

•  [SYSHIDDEN]: All files must be in a directory

18

 VAFS vs. ODS-2/5: Differences
•  On-disk structure for metadata is completely different!
•  All metadata writes bounce through a recovery log before being written to

destination LBN’s
•  File deletion: VAFS moves “deleted” files to [SYSDELETE], then deleted in

background. Allows deletion of large files to be broken up into smaller atomic
transactions.

•  [SYSHIDDEN]: All files must be in a directory
•  File structure metadata is organized and stored outside of file system itself

(no INDEXF.SYS, QUOTA.SYS, etc. …)

19

 VAFS vs. ODS-2/5: Differences
•  On-disk structure for metadata is completely different!
•  All metadata writes bounce through a recovery log before being written to

destination LBN’s
•  File deletion: VAFS moves “deleted” files to [SYSDELETE], then deleted in

background. Allows deletion of large files to be broken up into smaller atomic
transactions.

•  [SYSHIDDEN]: All files must be in a directory
•  File structure metadata is organized and stored outside of file system itself

(no INDEXF.SYS, QUOTA.SYS, etc. …)
•  VAFS uses “disk pages” of 2048 bytes as unit of operation (may be increased

to 4096)

20

 VAFS vs. ODS-2/5: Differences
•  On-disk structure for metadata is completely different!
•  All metadata writes bounce through a recovery log before being written to

destination LBN’s
•  File deletion: VAFS moves “deleted” files to [SYSDELETE], then deleted in

background. Allows deletion of large files to be broken up into smaller atomic
transactions.

•  [SYSHIDDEN]: All files must be in a directory
•  File structure metadata is organized and stored outside of file system itself

(no INDEXF.SYS, QUOTA.SYS, etc. …)
•  VAFS uses “disk pages” of 2048 bytes as unit of operation (may be increased

to 4096)
•  No volume sets, bad block handling, geometry sensitivity, placed allocation

21

 VAFS vs. ODS-2/5: Differences
•  On-disk structure for metadata is completely different!
•  All metadata writes bounce through a recovery log before being written to

destination LBN’s
•  File deletion: VAFS moves “deleted” files to [SYSDELETE], then deleted in

background. Allows deletion of large files to be broken up into smaller atomic
transactions.

•  [SYSHIDDEN]: All files must be in a directory
•  File structure metadata is organized and stored outside of file system itself

(no INDEXF.SYS, QUOTA.SYS, etc. …)
•  VAFS uses “disk pages” of 2048 bytes as unit of operation (may be increased

to 4096)
•  No volume sets, bad block handling, geometry sensitivity, placed allocation
•  Cannot be a system disk on IA64 or Alpha (yes on X86)

22

 A newly-initialized VAFS disk
Directory	1DGA220:[0,0]		
	
000000.DIR;1												0/0		31-JUL-2017	11:45:03.40		(RWED,RWED,RE,E)		
SYSDELETE.DIR;1									0/0		31-JUL-2017	11:45:03.31		(RWED,RWED,RWED,RWED)		
SYSHIDDEN.DIR;1									0/0		31-JUL-2017	11:45:03.40		(RWE,RWE,RE,)		
SYSQUOTA.DIR;1										0/0		31-JUL-2017	11:45:03.31		(RWED,RWED,RWED,RWED)		
SYSRECOVERY.DIR;1							0/0		31-JUL-2017	11:45:03.31		(RWED,RWED,RWED,RWED)	

Note the lack of ODS-2/5 style metadata files

23

 VAFS: How it works
•  VAFS is log-based, not log-structured (Spiralog)
•  All file system metadata writes are first written to a

transaction log before moved to destination LBNs
•  Metadata encapsulated in building block data structures like

•  List Pages
•  Streams
•  Trees
•  Key-list value pairs

24

Disk Page

2KB

LSN

LSN

LSN

LSN Ident Info

Swap Area

 List Pages
•  Ordered array of key-length value items. Most VAFS

metadata is stored in LIST PAGES
•  LIST PAGES have SLOTS which contain STREAMS
•  Aggregated into TREES; leaf pages store the actual data
•  Located by index entry in a parent list page
•  Examples of LIST PAGES as TREES

•  Attributes (ODS-2/5 file header == VAFS tree)
•  Directories
•  Extent maps

26

 List Pages

List Page

Header Attribute
Value
Pairs

Key
Remainder

& Value

Fixed
Size Key

Prefix

 Streams
•  Direct: stored in a List Page as an attribute value in a SLOT
•  Mapped: stored in List Pages via an extent tree. Root of the

tree is an attribute value
•  Examples of streams

•  Index file
•  Storage Bitmap
•  FID bitmap
•  Recovery log

28

 Streams

29

 Examples of Trees
•  Directories
•  Storage Bitmap Index
•  FID Bitmap Index
•  Storage Allocation Cache
•  FID allocation Cache

30

31

Directory

•  Special file type
•  Directory content is a special file attribute, stored as a tree
•  Directory entry
− Key = file name, normalized Unicode + case flags
− Value = file ID

32

Bitmap

•  Used to allocate file IDs and free blocks
•  Organized in page-size segments
•  Extensible tree structure

33

How do we make sense of this stuff?

$ DUMP/XFS is the answer (without it, we’d be doomed!)

34

How do we make sense of this stuff?

$ DUMP/XFS is the answer (without it, we’d be doomed!)

Thanks, Andy!

 VAFS: Let’s get started
 $ INIT <device name> /STRUCTURE = 6 <label>
•  Writes an ODS-2/5-compatible home block with a tiny bit of

ODS-6 info
•  Does not write much of the file system infrastructure

$ MOUNT <device name> <label>
•  “First Mount” of a VAFS volume does most of the

initialization
•  Key structures include Home Page, Recovery Log, storage

bitmap
35

 VAFS Home Page
$	DUMP/XFS	/BLOCK=	(START:320,COUNT:4)	<device>	
	
XFS	Metadata	Page	
XFS	page	header	
	
Page	size	(blocks):				4	used,	4	allocated	
Page	address:										LBN	320	
Page	state:												AllocSeq	=	503,	UpdateSeq	=	30,	LSN	=	57	
Parent	file	number:				5	
Page	log	flags:								file	lock	
	
XFS	list	page	header	
	
Page	type:													attributes	
Page	flags:												<none	specified>	
Structure	version:					1/1	(major/minor)	
List	page	size:								1984	bytes,	12	slots	in	use,	0	deleted	
Free	space	(bytes):				48	free	on	top,	0	deleted	

36

 Index File Info
Formatted	List	Page	Slots	
	
List	Page	Slot	0,	flags:		<none	specified>	
				Stream	type:							unspecified	
				8	byte	key:								(1)	-	volume	attributes		(#define	XFS_ATTR_VOLUME			1							/*	volume	attributes	*/)	
	
				208	byte	value:	
	00000000	00000000	00000000	00000800	00000800	00000200	E944A850	01020101P¨Dé........................	000000	
	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	000020	
	00000000	00500000	00000000	00000000	00000000	00000000	00000000	00000000P.....	000040	
	00000000	00000040	00000000	00500000	00000000	00500000	00000000	00500000	..P.......P.......P.....@.......	000060	
	00B1ED7A	E944CF60	00000000	00000D80	00000D80	00000000	00000000	00000040	@.......................`ÏDézí±.	000080	
	00000000	00000000	00000000	00000000	00000000	00000000	00000000	00000000	0000A0	
																																					00000000	00000000	00000000	00000000	0000C0	
	
List	Page	Slot	1,	flags:		mapped	
				Stream	type:							metadata	
				8	byte	key:								(2)	-	index	file	stream		(#define	XFS_ATTR_INDEX			2							/*	index	file	stream	..	*/)	
				Formatted	extent	list	on	following	page	
	
List	Page	Slot	2,	flags:		<none	specified>	
				Stream	type:							unspecified	
				8	byte	key:								(3)	-	index	file	stream	info	(#define	XFS_ATTR_INDEX_INFO		3	/*	..	and	stream	attributes	*/)	
				Allocated	length:		131072	(0000000000020000)	bytes	(256	blocks)	
				Data	length:							131072	(0000000000020000)	bytes	(256	blocks)	
				Highest	written:			0	(0000000000000000)	bytes	(0	blocks)	

37

38

Port to X86-64

39

Agenda
•  Previous VSI Boot Camps

–  2014: Dusted off the “Porting Play Book”
–  2015: Described the basic plan and a few details
–  2016: Added more plan details and described the beginnings of implementation

•  Today
–  Focus on implementation progress
–  What was/is difficult?
–  Work progress and what remains

40

Boot Contest
•  What

–  Boot OpenVMS
–  Login
–  Use DIR command to get a directory listing

•  Details
–  To participate, send email to Sue Skonetski and fill in a survey
–  Guidance: Q1 2018

System
 Architecture-Specific Work!

Boot Manager
•  Select Console Mode
•  Analyze Devices
•  Auto-Action or Enter Command Loop
•  Boot System via Memory Disk
•  Primary Kernel
•  Dump Kernel
•  Enter Console Services

 What is MemoryDisk?

•  ODS-5 container file with a 3-partition disk image
•  Built and maintained by OpenVMS utilities
•  Contains kernel files with SYMLINKS to active system
•  Shared by Primary Kernel and Dump Kernel
•  Located on any accessible device, including network

Status: In use on multiple platforms.

VMS_BOOTMGR.EFI

Primary Kernel

SYS$MD.DSK

Primary Kernel
Memory

Dump Kernel
Memory

SYSBOOT
Data Structures

Dump Kernel SYSBOOT
Data Structures

42

43

44

45

46

Always Boot from Memory Disk – Why?
•  Why did we undertake this large and complicated project?
-  Increase maintainability - one boot method regardless of source device
-  Eliminate writing of OpenVMS boot drivers
-  Eliminate modifying (or replacing) primitive file system

•  Other Factors
–  Take advantage of UEFI capabilities, especially I/O
–  This opportunity may never exist again

Status: 95+% done, only final details of booting into a cluster remain

Dump Kernel
•  MemoryDisk dictated the need for a new way to handle crash dump
•  User-mode program with some kernel-mode routines
•  It “replaces” STARTUP.COM in the standard boot sequence
•  Everything the Dump Kernel needs is in the MemoryDisk
•  Writes raw/compressed full/selective dumps to system disk or DOSD

Status: We have debugged everything we can on Itanium and will do final
verification work on x86 when enough of OpenVMS is running.

 ! 47

Displays time, then $CMKRNL & ACCVIO

New
Error log details

Starting timestamp

Ending timestamp

Statistics

48

49

Memory Management
•  Challenges

–  OpenVMS-style page protections for kernel, exec, super, user
–  Designing for 4-level and 5-level paging
–  2MB and 1GB pages
–  Change to traditional paging mechanism and access

•  Status
–  SYSBOOT: done (compiled and linked in x-build)

•  Get memory descriptors from the boot manager
•  Set up paging mechanisms

–  Next up:
•  Create general page management routines
•  Fix code that manages pages on their own

50

Almost Everything you know about
memory management is the
same

50

51

 your unprivileged application knows
Almost everything you know about

memory management is the
same

51

Software Interrupt Services

•  New Data Structures!
•  MTPR / MFPR!
•  Exceptions!
•  System Service Dispatching!
•  Interrupts!
•  ASTs!
•  Mode Switching!
•  Context Switching!
•  Performance Builds!

OpenVMS
expectations

Platform
features

S
W
I
S

52

OpenVMS Assumes Things…

•  VAX/VMS was designed in tandem with the VAX hardware architecture.
•  Where desirable, hardware features were added to satisfy the OS’ needs.
•  A lot of OS code was written to make use of these hardware features.!

53

What are these Assumptions?
•  4 hardware privilege modes
•  Each with different page protections
•  And with their own stack
•  32 Interrupt Priority Levels
•  16 for Hardware Interrupts
•  16 for Software Interrupts
•  Software Interrupts are triggered immediately when IPL falls below the

associated IPL
•  Asynchronous Software Trap (AST) associated with each mode, triggered

immediately when IPL falls below ASTDEL (equally or less privileged mode)
•  The hardware provides atomic instructions for queue operations
•  The hardware provides a set of architecturally defined Internal Processor

Registers (IPRs) 54

How does Alpha meet these Assumptions?

•  Alpha is a very clean RISC Architecture
•  But OpenVMS was definitely in the Alpha Architecture designers’ minds
•  The 4 modes OpenVMS needs are part of the basic Alpha architecture
•  PALcode, code supplied by firmware that has more privileges than even

kernel mode, and which is uninterruptible, provides the flexibility to
implement OS specific features

•  IPLs, Software Interrupts and ASTs are implemented through a combination of
hardware support and PALcode

•  Atomic queue instructions are provided by PALcode
•  PALcode also provides the mapping from IPRs as expected by OpenVMS to

the hardware implementation’s IPRs
55

So how about Itanium Hardware?

•  Very different story, Itanium’s design was finished before OpenVMS as an OS
was considered

•  Offers the 4 modes OpenVMS needs
•  The TPR (Task Priority Register) provides an IPL-like mechanism for hardware

interrupts only
•  No compatible software interrupt mechanism or ASTs
•  No atomic queue instructions
•  No OpenVMS-compatible IPRs

56

Hence, SWIS

•  SWIS (Software Interrupt Services) is a piece of low-level OS code that is
involved in mode changes.

•  SWIS implements the software interrupt and AST support required by
OpenVMS, using hardware support as available.

•  Other code in the OS (with some special support from the SWIS code to
ensure atomicity) provides atomic queue instructions

•  A combination of code in SWIS and other code in the OS provides OpenVMS-
compatible IPRs

•  SWIS makes the Itanium CPU look more like a VAX to the rest of the OS

57

Bridge Function
SWIS bridges the gap between the assumptions made by the rest of the OS to
the features supported by the hardware

58

ASTs! Software
Interrupts!

Context
Switching!

Memory
Management!

SWIS on X86-64
•  Because a similar mismatch exists between OpenVMS’ assumptions and the

hardware-provided features, SWIS will be ported to X86-64.
•  Ported means mostly re-written here, as the provided features are very

different between Itanium and X86-64.
•  On X86-64, SWIS will have to do more, as the X86-64 architecture does not

provide the 4 mode support OpenVMS needs.
•  Because of this, SWIS on X86 will not only be active when transitioning from

an inner mode to an outer mode, but also when transitioning from an outer
mode to an inner mode.

•  Also because of this, SWIS now needs to become involved in memory
management (in a supporting role).

•  There’s good news too: the Itanium architecture has some features that are
very complex to manage (think RSE), that are absent in X86-64.

59

Swis on X86-64
OpenVMS Expects:
•  4 Modes, different page protections,

separate stacks
•  32 IPLs (16 h/w, 16 s/w) 

•  Software interrupts tied to IPLs 

•  Per-process, per-mode ASTs,
delivered when below ASTDEL

•  Atomic queue instructions
•  VAX-like IPRs

X86-64 Offers:!
•  2 rings, different page protections,

separate stacks
•  14 hardware TPR’s, mask off

hardware interrupts in groups of 16
•  Software interrupts unaffected by

TPR’s. No IPL’s
•  No AST-like concept at all

•  No atomic queue instructions
•  X86-64 IPRs

60

Design Phase

SWIS for X86-64 was designed over a period of 1.5 years (1 year part-time, 0.5
years full-time), in several phases:
•  Basic design (not detailed enough to base implementation on)
•  Detailed design for System Service dispatching
•  Detailed design for Hardware Interrupt and Exception handling
•  Detailed design for Software Interrupts and ASTs!
•  Detailed design for Processes and Kernel Threads!

61

Design Review Phase

•  Partial reviews as the design progressed
•  In-depth 3-day review between myself and

Burns Fisher
•  This one turned up a design flaw that could

have enabled unprivileged code to bring down the system
•  Complete walk-through and review in one of our weekly X86-64 engineering

meetings
•  A lot of the content in this presentation is based on the slides I prepared for

that walk-through

62

Implementation Phase

Implementation started in May 2017, broken down into different parts:
•  Quick and Dirty Exception Handling for early code that needs something
•  Data Structure Definitions
•  VAX/Alpha IPRs
•  Hardware Interrupts and Exceptions
•  System Services
•  Software Interrupts
•  ASTs
•  Initialization
•  Processes and Scheduling

63

2 SYSTEM_PRIMITIVES execlet builds

•  Compatibility build, works on any x86-64 CPU we support
•  Performance builds, optimized for CPUs that have support for one or more of

the following:
1.  Address Space Numbers (PCIDs) in TLB
2.  RDGSBASE instruction
3.  XSAVES/XRSTORS instructions for saving/restoring extended (“floating point”) registers

(MMX, SSE, AVX)

•  Highest Performance build targets Intel processors made after 2013 (Ivy
Bridge and beyond).

64

SWIS Data Structure

•  One per CPU, stays with CPU over the lifetime of the system
•  Only CPU-specific datastructure that can be found directly
•  Has a different virtual address for each CPU
•  Pointed to by GS segment register

65

Mode “Components”

•  Processor ring (0 for K, 3 for ESU)
•  Stack pointer
•  Address Space Number
•  Page Table Base
•  Current mode as recorded in the SWIS data structure

•  A mode is “canonical” when all the above are in agreement
•  SWIS should be the only code that ever sees non-canonical modes

•  We prototyped this on Itanium
66

Basics of Mode Switching

•  Interrupt or SYSCALL instruction
1.  Switches CS and SS to ring 0
2.  Switches to the kernel-mode stack (interrupt only, not SYSCALL)
3.  Disables interrupts

•  Get fully into kernel mode (ASN, PTBR, stack, DS, ES)
•  Going in? -> Build return frame on stack
•  Going out? -> Deliver SwInts and ASTs as needed
•  Get into destination mode (ASN, PTBR, stack, DS, ES)
•  IRET or SYSRET instruction
1.  Switches CS and SS to ring 3
2.  Switches to the outer-mode stack (IRET only, not SYSRET)
3.  Enables interrupts 67

68

XDELTA-lite (XLDELTA) Debugger
•  Wanted something, however primitive, as early as possible
-  Started from scratch, written in C and a little assembler
-  Follows XDELTA syntax
-  Linked into SYSBOOT

•  Current Capabilities
–  Set and proceed from breakpoints
–  Examine and deposit register
–  Examine and deposit memory location
–  Examine multiple instructions
–  Examine instruction and set breakpoint
–  List breakpoints

•  XDELTA vs. XLDELTA?

Status: In use, may add additional capabilities

 Objects & Images
 Image Building and Execution!

70

Calling Standard
•  Started with AMD-64 runtime conventions
•  Deviated only where absolutely necessary
•  Problem #1

–  Standard assumes all within-the-image addressing can be done PC-relative
–  OpenVMS Image Activator may change relative distances between image sections
–  Solution: Attach a linkage table to each code segment and address all data through it

•  Problem #2
–  Need to preserve 32b addressability when procedures are in P2 or S2
–  Solution: Create 32b-addressable stubs that forward calls to the procedures

•  Status
–  Satisfies all current development needs
–  Remaining work: address unwinding, debugger, and translated code issues as they arise

71

Alpha-to-x86 Dynamic Binary Translator
•  Directly execute an Alpha image on x86
•  No restrictions in terms of compiler version or operating system version of source
•  Does not support privileged code translation
•  Status: working prototype on x86 linux

–  Using selected pieces of simh as a basis for emulation
–  Running simple Alpha images on x86 linux
–  Temporary code to emulate

•  OpenVMS loader and image activator
•  some OpenVMS library routines

–  BASIC, C, COBOL, FORTRAN, and PASCAL images have been translated
–  With no optimization work, performance is about equal to an Alpha ES47

72

Dynamic Binary Translator Flow
•  First execution

–  Runs in emulation mode
–  Creates topology file
–  Quite slow

•  Each subsequent execution
–  Reads topology file
–  Generates LLVM IR
–  Runs natively
–  Updates topology file, if needed

Next Steps

•  Synchronize topology updates (multiple users)
•  Security of topology file
•  Image activator integration
•  Improve performance
•  Translate a VESTed image – looks to be difficult

Dhrystone: microseconds/run

•  Native 0.2
•  Emulated 14.1
•  Translated 0.2

73

Cross Build
•  Build on Itanium, target x86

–  Builds done roughly weekly
–  Let the build tell us what we do not already know
–  Building everything
–  At some point will ignore components not needed for First Boot

•  Tools in place
–  BLISS, C, XMACRO, assembler
–  Linker, Librarian, Analyze, SDL

•  Status
–  Concentrating on INIT through ASSEM phases
–  Reducing “noise” with each iteration

74

What’s Different ?
FAQ: What are the visible differences that will come with x86-64 OpenVMS?

•  Applications: none that we know of now

•  Interactive users and command procedures: none that we know of now

•  System managers: new utility to update the MemoryDisk

To learn more please contact us:!
vmssoftware.com!
info@vmssoftware.com!
+1.978.451.0110!

Thank You

75

