
1

VMS:
The First 40 Years

A history of technology

Andy Goldstein

2

• Company founded in 1957
• PDP-1 – first computer in 1960
• First computer to cost less than

$1Million

Prehistory: DEC and the PDP-1

3

• 12 bits
• 4K words memory
• Disk-based operating

system

PDP-8 – The First Desktop Computer

4

Memory – the Old Way

5

Beginning of the Byte Architecture

• PDP-11 - 16-bit architecture

• Multiple operating systems

• 1974: Should we build a 32-bit PDP-11?

6

Genealogy of the VAX

PDP-11/20 16 bit
address Unibus

PDP-11/45 18 bit
address Unibus

PDP-11/70 22 bit
address Unibus

Massbus

DEC-10 KL-10

7

Genealogy (continued)

Dragon

VAX-11/780
29 bit address

Unibus Massbus

Unicorn DEC-20/20

8

Beginning a 20 Year Tradition
of Shattering Barriers

1975: STAR and STARLET goals

• April 1975: Gordon Bell says “Go”

• Integrated hardware and
software design

• Expand addressing to 32 bit

• Highly scalable architecture

• One system, compatible tools

9

Beginning a 20 Year Tradition
of Shattering Barriers

32 Bits – Do the Math

• Eliminates software “overlays”

• Critical software stays resident

• Improved performance

• Programmer efficiency

• Program execution

10

VAXA Committee

• Gordon Bell

• Peter Conklin

• Dave Cutler

• Bill Demmer

• Tom Hastings

• Richie Lary
• Dave Rogers
• Steve Rothman
• Bill Strecker, chief architect

11

Early Development

• Sept 1975 SRM Rev 1

• April 1976 April Task Force

• June-Aug Detailed software design

• Sept 1976 Hardware simulator and initial system kernel

• April 1977 DCL and file system

• June 1977 Breadboard and first VMS timesharing

12

Initial VMS Design Team

• Dave Cutler, project leader

• Andy Goldstein

• Roger Gourd, manager

• Roger Heinen

By November, 1975...

• Dick Hustvedt

• Hank Levy

• Peter Lipman

• Trev Porter

13

SRM V1 Memory Management

Byte OffsetPageSegment NumberAM

ISN Page Byte Offset

Byte OffsetPFN

14

Address
Translation

15

Early Development

• Sept 1975 SRM Rev 1

• April 1976 April Task Force

• June-Aug Detailed software design

• Sept 1976 Hardware simulator and initial system kernel

• April 1977 DCL and file system

• June 1977 Breadboard and first VMS timesharing

16

780 Prototype Power On

17

Program Development and Testing

Bliss
CompilerDEC-10 OBJ

18

Timesharing on the Prototype

• Prototype 780, 1MB memory

− 2 RP06 + RK07

• VT52s in the offices

• Self-supporting

− System builds

− Bliss Compiler

− “Eat our own dog food”

19

1977 1978 1979 1980 1981 1982...

• October 25, 1977

• VAX-11/780

• VMS V1.0 Announced

20

October 1977 Announcement

21

V1.0 Development Team

22

1977 1978 1979 1980 1981 1982...

• VMS V1.0 Shipped

• DECnet Phase II

• FORTRAN IV

• Up to 64 MB Memory

23

1977 1978 1979 1980 1981 1982...

• DECnet Phase III & Ethernet

• VMS V2.0

• New Languages & Tools

• VAX-11/750

24

1977 1978 1979 1980 1981 1982...

• VAX Information Architecture

• Common Data Dictionary

• RMS and VAX-11 DBMS

• Datatrieve

• CALLable From Any VMS
Programming Language

25

VMS Technology Highlights
• OpenVMS Calling Standard
• VMSclusters
• Symmetric Multiprocessing
• The Alpha Port
• OpenVMS Galaxy
• The Itanium Port

26

OpenVMS Calling Standard
A common binary interface between software modules, regardless of

language
• Argument list format
• Register conventions
• Descriptors
• Condition handling

27

OpenVMS Calling Standard

Fortran
Module

C
Module

Pascal
Module

Fortran
I/O Library

Pascal
I/O Library

Common
Math Library

VMS System
Services

28

VAXes Get Small

• MicroVAX

• VAXstation 2000

• and more

• CVAX Chip…
When You Care Enough
to Steal the Very Best!

29

DECwindows
VMS becomes a workstation
• Graphics device drivers
• Port of X-11 and OSF Motif
• Session manager menu items:

− DCL shell script
• Existing character cell apps:

− Partition into character cell UI and callable application logic
− Add new windows UI

30

• MA-780 Shared Memory
• Shared memory global sections

and mailboxes
• VAX-11/782
• VAX-11/785
• VAX 8600, etc.

VAXes Get Big

31

VMSClusters
Not like this!

32

VMS Becomes a Distributed Operating System
VMSClusters

VMS
Node

Storage
Ctrl

Storage
Ctrl

VMS
Node

VMS
Node

33

SCS – Cluster Communications Architecture
Designed for high performance, low latency
• Fully connected LAN
• Virtual circuit with guaranteed response
• Direct memory block transfer
• Failures detected with timeout or “last gasp” datagram

34

Cluster Configuration
Fully automatic with no permanent master
• SCS connections are formed to all visible nodes
• Prospective member announces connectivity
• Coordinator node proposes new membership
• Other nodes verify and either accept or reject

35

Clusters: The Lock Manager
• Abstract named resources
• Lock modes to represent typical data access:

− EX
− PW
− PR
− CW
− CR
− NL

36

Clusters: The Lock Manager
Fully distributed implementation with no permanent master
• Distributed directory identifies master for a resource
• Lock ownership recorded by master and lock holders
• Master is the node with the most activity
• Automatic reconfiguration on node failure

37

Clusters: The Lock Manager

Requestor
Node

Directory
Node“I would like lock X”

“Lock X is mastered on node B”

“I would like lock X”
Node

B

“You got it”

38

RMS and the Lock Manager
RMS Features
• Record-oriented I/O package

− Sequential, direct, indexed
• Coherent shared write access with record locking
• Process local buffers with coherent cache management
Private locking implementation replaced with cluster lock manager

39

Before Clusters: File ACP
Server process intercepts complex file operations
• Open file context in system pool
• File metadata cache in process context
• Single thread operation provided implicit synchronization

40

Clusters: the File XQP
• Cluster implementation choices

− Single server with failover
− Multiple coordinated ACPs

• Server process converted to run in client process context
− Cache moved to system pool
− Simple threading package layered on AST mechanism
− Explicit synchronization with lock manager

41

VAXes Get Bigger:
Symmetric Multiprocessing
Original kernel synchronization designed for uniprocessor:
• IPL 24-31: clock, cpu errors
• IPL 16-23: I/O interrupts
• IPL 8-11: device driver threads
• IPL 8: scheduling, memory management, kernel-level messages, etc.
• IPL 4: I/O completion processing
• IPL 3: process rescheduling
• IPL 2: AST delivery
• IPL 0: process execution

42

Symmetric Multiprocessing
Implicit IPL synchronization replaced with explicit spinlocks
• Each IPL becomes a spinlock
• IPL 8 broken into functional areas

− Memory Management
− Scheduling
− Cluster communications
− File system
− etc.

• Locking refined in subsequent releases

43

SMP Conversion
Brute force effort
• Entire kernel inspected for synchronization
• Aided by existing macros (DSBINT, ENBINT, SETIPL)
• Counters converted to interlocked instructions
• Spinlock rank design detects design deadlocks
• Debug and production locking macros

44

The VAX isn't big enough
• 32 bit address space vs application and real memory size
• VAX performance vs RISC machines

− Instruction bit efficiency vs large instruction caches
− Instruction decoding and pipelining
− Firmware vs “direct wired” implementation

45

The address space... again

• VAX and VMS 32-bit addressing
capability…

• Q: If VAX 32-bit addressing equates to 20
minutes of TV, what size multimedia can
64-bit manage?

46

The address space... again

• A: Every TV Show Ever Shown Since
1948!

47

The RISC Advantage

48

Port to Alpha
VMS and VAX were made for each other
• Privileged architecture (memory management, access modes, IPLs, etc.)
• Variable length CISC instructions, 32 bit architecture
• Most of VMS kernel in macro

49

Port to Alpha
Alpha is
• 64 bit architecture
• Fixed length RISC instruction
But…
• VAX-like privileged architecture
• Compatible datatypes
New calling standard
• Register arguments
• New stack & function descriptor format

50

Port to Alpha
Rewrite:
• CPU support
• Boot code
• Some drivers
• Low level memory management
• Exception handling
• Math RTL
Keep:
• All major interfaces

51

Port to Alpha
Compile everything else:
• Bliss & C
• Macro!

− 32 bit vs 64 bit
− Compilable macro
− Atomicity issues

• Executable images!!
Result:

“It’s really VMS. It even has the same bugs.”
- early Alpha user

52

Binary Translation

Original VAX code & Data

Address translation table

Translated Alpha code

53

Translated Code Execution

Native execution stack

VAX to Alpha jacket frame

Translated code frames
(VAX call stack)

Alpha to VAX jacket frame

Native execution stack

54

64 Bit Virtual Memory
• Original page table design

OFFPage

Page

OFF

S0 Space

Data

Data Page

55

64 Bit Virtual Memory in VMS V7.0
• Extended virtual addressing

OFFL3L2L1

L1

L2

L3

OFF

Data

Data Page
L3PT

L2PT

L1PT

56

64 Bit Virtual Memory
• Page table reference

L3L2L1

L1

L2

L3

K

K

L3PT

L2PT

L1PT

57

AlphaServer GS1280
• 64 CPUs
• 64GB memory
• Pushing the limits of

SMP scaling

Alphas Get Even Bigger

58

Hard Partitioning

Partitioning by hardware
console
• Only allocated

resources are visible to
each instance

59

VMS instances cooperate
to partition the hardware
• CPU and IOP

assignment
• Memory allocation
• Shared memory

Soft Partitioning – OpenVMS Galaxy

60

VMS instances cooperate
to partition the hardware
• Resources can be

reallocated

Soft Partitioning – OpenVMS Galaxy

61

Shared memory is the
fastest interconnect

Galaxy Cluster Architecture

62

The Itanium Architecture
The next generation beyond RISC
• Explicit parallel execution
• Many more registers
Driven by chip development economics as much as technical factors

63

Chip Development Economics

64

Port to Itanium
• Another 64-bit architecture, but...
• Different register conventions
• Intel calling standard
• Different privileged architecture

− No PALcode
− Different console / boot procedure
− Different interrupt architecture
− Different synchronization primitives

65

Port to Itanium
• Fortunately...
• 4 access modes
• Compatible memory protection features
• Memory atomicity no worse than Alpha

66

Port to Itanium
• Rewrite

− CPU support
− Boot code

• New
− Interrupt & exception delivery in software
− Emulation of interlocked instructions (queues, etc.)
− EFI partition on system disk

• Redesign
− Calling standard and condition handling
− Object and executable file format

67

Port to Itanium
• Recompile
• 95% of base OS code recompiled without change

− Biggest problem was “IF ALPHA” conditionals
• Binary translator also available

− Even supports VAX translated images!

68

Distributed Client-Server Computing
• Oh... VMS did that 35 years ago
• Keeping up with current technologies and tools (over time)

− TCPIP
− OSF DCE
− Microsoft DCOM
− Apache web server
− OpenSSL, LDAP, Kerberos
− ...

69

How to Build an Evolvable System
It begins at the beginning
• Start with a team of grownups
• Design with care
• Keep the team small

− Initial VMS architecture came from 3 people
− Entire VMS V1 team was 24 people

• Keep the pressure up
− The first known “fact” about VMS was the schedule
− Beware of creeping elegance

70

How to Build an Evolvable System
• Modularity
• Modularity
• Modularity

71

Modularity in VMS
• Dynamically loaded modules for all configuration dependent components
• Huge number of system models and devices supported over the life of the

system
• Any VMS system disk will boot on any configuration of a particular architecture
• New hardware is supported with minimal effect on the rest of the system

72

Maintain Design Integrity
Causes of “software rot”
• Lack of design understanding
• Quick and dirty changes
• Changes that compromise the original design
• Functional extension without extending the original design
• Duplication of function
• Runaway complexity

73

Maintain Design Integrity
• Document the design
• Well defined stable interfaces
• “Firewall” major modules – validate inputs
• Clean house – rewrite “worn out” components

74

• X86 port
• New file system
• Ongoing modernization
• …

Ready For the Next Adventure…

75

To learn more please contact us:
vmssoftware.com
info@vmssoftware.com
+1.978.451.0110

Thank You

76

Divider with
Section header subtitle Arial 28pt

highlight…

