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VMS:
The First 40 Years

A history of technology
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• Company founded in 1957
• PDP-1 – first computer in 1960
• First computer to cost less than 

$1Million

Prehistory: DEC and the PDP-1
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• 12 bits
• 4K words memory
• Disk-based operating 

system

PDP-8 – The First Desktop Computer
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Memory – the Old Way
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Beginning of the Byte Architecture

• PDP-11 - 16-bit architecture

• Multiple operating systems

• 1974: Should we build a 32-bit PDP-11?
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Genealogy of the VAX

PDP-11/20 16 bit 
address Unibus

PDP-11/45 18 bit 
address Unibus

PDP-11/70 22 bit 
address Unibus 

Massbus

DEC-10 KL-10
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Genealogy (continued)

Dragon

VAX-11/780
29 bit address 

Unibus Massbus

Unicorn DEC-20/20
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Beginning a 20 Year Tradition 
of Shattering Barriers

1975: STAR and STARLET goals

• April 1975: Gordon Bell says “Go”

• Integrated hardware and 
software design

• Expand addressing to 32 bit

• Highly scalable architecture

• One system, compatible tools
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Beginning a 20 Year Tradition 
of Shattering Barriers

32 Bits – Do the Math

• Eliminates software “overlays”

• Critical software stays resident

• Improved performance

• Programmer efficiency

• Program execution
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VAXA Committee

• Gordon Bell

• Peter Conklin

• Dave Cutler

• Bill Demmer

• Tom Hastings

• Richie Lary
• Dave Rogers
• Steve Rothman
• Bill Strecker, chief architect
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Early Development

• Sept 1975 SRM Rev 1

• April 1976 April Task Force

• June-Aug Detailed software design

• Sept 1976 Hardware simulator and initial system kernel

• April 1977 DCL and file system

• June 1977 Breadboard and first VMS timesharing
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Initial VMS Design Team

• Dave Cutler, project leader

• Andy Goldstein

• Roger Gourd, manager

• Roger Heinen

By November, 1975...

• Dick Hustvedt

• Hank Levy

• Peter Lipman

• Trev Porter
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SRM V1 Memory Management

Byte OffsetPageSegment NumberAM

ISN Page Byte Offset

Byte OffsetPFN
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Address
Translation
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Early Development

• Sept 1975 SRM Rev 1

• April 1976 April Task Force

• June-Aug Detailed software design

• Sept 1976 Hardware simulator and initial system kernel

• April 1977 DCL and file system

• June 1977 Breadboard and first VMS timesharing
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780 Prototype Power On
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Program Development and Testing

Bliss
CompilerDEC-10 OBJ
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Timesharing on the Prototype

• Prototype 780, 1MB memory

− 2 RP06 + RK07

• VT52s in the offices

• Self-supporting

− System builds

− Bliss Compiler

− “Eat our own dog food”
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1977 1978 1979 1980 1981 1982...

• October 25, 1977

• VAX-11/780

• VMS V1.0 Announced
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October 1977 Announcement
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V1.0 Development Team
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1977 1978 1979 1980 1981 1982...

• VMS V1.0 Shipped

• DECnet Phase II

• FORTRAN IV

• Up to 64 MB Memory
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1977 1978 1979 1980 1981 1982...

• DECnet Phase III & Ethernet

• VMS V2.0

• New Languages & Tools

• VAX-11/750
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1977 1978 1979 1980 1981 1982...

• VAX Information Architecture

• Common Data Dictionary

• RMS and VAX-11 DBMS

• Datatrieve

• CALLable From Any VMS 
Programming Language
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VMS Technology Highlights
• OpenVMS Calling Standard
• VMSclusters
• Symmetric Multiprocessing
• The Alpha Port
• OpenVMS Galaxy
• The Itanium Port
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OpenVMS Calling Standard
A common binary interface between software modules, regardless of 

language
• Argument list format
• Register conventions
• Descriptors
• Condition handling
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OpenVMS Calling Standard

Fortran
Module

C
Module

Pascal
Module

Fortran
I/O Library

Pascal
I/O Library

Common
Math Library

VMS System
Services
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VAXes Get Small

• MicroVAX

• VAXstation 2000

• and more

• CVAX Chip…
When You Care Enough 
to Steal the Very Best!
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DECwindows
VMS becomes a workstation
• Graphics device drivers
• Port of X-11 and OSF Motif
• Session manager menu items:

− DCL shell script
• Existing character cell apps:

− Partition into character cell UI and callable application logic
− Add new windows UI
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• MA-780 Shared Memory
• Shared memory global sections 

and mailboxes
• VAX-11/782
• VAX-11/785
• VAX 8600, etc.

VAXes Get Big
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VMSClusters
Not like this!
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VMS Becomes a Distributed Operating System
VMSClusters

VMS
Node

Storage
Ctrl

Storage
Ctrl

VMS
Node

VMS
Node
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SCS – Cluster Communications Architecture
Designed for high performance, low latency
• Fully connected LAN
• Virtual circuit with guaranteed response
• Direct memory block transfer
• Failures detected with timeout or “last gasp” datagram
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Cluster Configuration
Fully automatic with no permanent master
• SCS connections are formed to all visible nodes
• Prospective member announces connectivity
• Coordinator node proposes new membership
• Other nodes verify and either accept or reject



35

Clusters: The Lock Manager
• Abstract named resources
• Lock modes to represent typical data access:

− EX
− PW
− PR
− CW
− CR
− NL
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Clusters: The Lock Manager
Fully distributed implementation with no permanent master
• Distributed directory identifies master for a resource
• Lock ownership recorded by master and lock holders
• Master is the node with the most activity
• Automatic reconfiguration on node failure
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Clusters: The Lock Manager

Requestor
Node

Directory
Node“I would like lock X”

“Lock X is mastered on node B”

“I would like lock X”
Node

B

“You got it”
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RMS and the Lock Manager
RMS Features
• Record-oriented I/O package

− Sequential, direct, indexed
• Coherent shared write access with record locking
• Process local buffers with coherent cache management
Private locking implementation replaced with cluster lock manager



39

Before Clusters: File ACP
Server process intercepts complex file operations
• Open file context in system pool
• File metadata cache in process context
• Single thread operation provided implicit synchronization



40

Clusters: the File XQP
• Cluster implementation choices

− Single server with failover
− Multiple coordinated ACPs

• Server process converted to run in client process context
− Cache moved to system pool
− Simple threading package layered on AST mechanism
− Explicit synchronization with lock manager
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VAXes Get Bigger:
Symmetric Multiprocessing
Original kernel synchronization designed for uniprocessor:
• IPL 24-31: clock, cpu errors
• IPL 16-23: I/O interrupts
• IPL 8-11: device driver threads
• IPL 8: scheduling, memory management, kernel-level messages, etc.
• IPL 4: I/O completion processing
• IPL 3: process rescheduling
• IPL 2: AST delivery
• IPL 0: process execution
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Symmetric Multiprocessing
Implicit IPL synchronization replaced with explicit spinlocks
• Each IPL becomes a spinlock
• IPL 8 broken into functional areas

− Memory Management
− Scheduling
− Cluster communications
− File system
− etc.

• Locking refined in subsequent releases
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SMP Conversion
Brute force effort
• Entire kernel inspected for synchronization
• Aided by existing macros (DSBINT, ENBINT, SETIPL)
• Counters converted to interlocked instructions
• Spinlock rank design detects design deadlocks
• Debug and production locking macros
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The VAX isn't big enough
• 32 bit address space vs application and real memory size
• VAX performance vs RISC machines

− Instruction bit efficiency vs large instruction caches
− Instruction decoding and pipelining
− Firmware vs “direct wired” implementation
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The address space... again

• VAX and VMS 32-bit addressing 
capability…

• Q: If VAX 32-bit addressing equates to 20 
minutes of TV, what size multimedia can 
64-bit manage?
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The address space... again

• A: Every TV Show Ever Shown Since 
1948!
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The RISC Advantage
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Port to Alpha
VMS and VAX were made for each other
• Privileged architecture (memory management, access modes, IPLs, etc.)
• Variable length CISC instructions, 32 bit architecture
• Most of VMS kernel in macro
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Port to Alpha
Alpha is
• 64 bit architecture
• Fixed length RISC instruction
But…
• VAX-like privileged architecture
• Compatible datatypes
New calling standard
• Register arguments
• New stack & function descriptor format
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Port to Alpha
Rewrite:
• CPU support
• Boot code
• Some drivers
• Low level memory management
• Exception handling
• Math RTL
Keep:
• All major interfaces
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Port to Alpha
Compile everything else:
• Bliss & C
• Macro!

− 32 bit vs 64 bit
− Compilable macro
− Atomicity issues

• Executable images!!
Result:

“It’s really VMS. It even has the same bugs.”
- early Alpha user
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Binary Translation

Original VAX code & Data

Address translation table

Translated Alpha code
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Translated Code Execution

Native execution stack

VAX to Alpha jacket frame

Translated code frames
(VAX call stack)

Alpha to VAX jacket frame

Native execution stack
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64 Bit Virtual Memory
• Original page table design

OFFPage

Page

OFF

S0 Space

Data

Data Page
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64 Bit Virtual Memory in VMS V7.0
• Extended virtual addressing

OFFL3L2L1

L1

L2

L3

OFF

Data

Data Page
L3PT

L2PT

L1PT
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64 Bit Virtual Memory
• Page table reference

L3L2L1

L1

L2

L3

K

K

L3PT

L2PT

L1PT
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AlphaServer GS1280
• 64 CPUs
• 64GB memory
• Pushing the limits of 

SMP scaling

Alphas Get Even Bigger
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Hard Partitioning

Partitioning by hardware 
console
• Only allocated 

resources are visible to 
each instance
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VMS instances cooperate 
to partition the hardware
• CPU and IOP 

assignment
• Memory allocation
• Shared memory

Soft Partitioning – OpenVMS Galaxy
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VMS instances cooperate 
to partition the hardware
• Resources can be 

reallocated

Soft Partitioning – OpenVMS Galaxy
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Shared memory is the 
fastest interconnect

Galaxy Cluster Architecture
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The Itanium Architecture
The next generation beyond RISC
• Explicit parallel execution
• Many more registers
Driven by chip development economics as much as technical factors
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Chip Development Economics
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Port to Itanium
• Another 64-bit architecture, but...
• Different register conventions
• Intel calling standard
• Different privileged architecture

− No PALcode
− Different console / boot procedure
− Different interrupt architecture
− Different synchronization primitives
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Port to Itanium
• Fortunately...
• 4 access modes
• Compatible memory protection features
• Memory atomicity no worse than Alpha
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Port to Itanium
• Rewrite

− CPU support
− Boot code

• New
− Interrupt & exception delivery in software
− Emulation of interlocked instructions (queues, etc.)
− EFI partition on system disk

• Redesign
− Calling standard and condition handling
− Object and executable file format



67

Port to Itanium
• Recompile
• 95% of base OS code recompiled without change

− Biggest problem was “IF ALPHA” conditionals
• Binary translator also available

− Even supports VAX translated images!
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Distributed Client-Server Computing
• Oh... VMS did that 35 years ago
• Keeping up with current technologies and tools (over time)

− TCPIP
− OSF DCE
− Microsoft DCOM
− Apache web server
− OpenSSL, LDAP, Kerberos
− ...
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How to Build an Evolvable System
It begins at the beginning
• Start with a team of grownups
• Design with care
• Keep the team small

− Initial VMS architecture came from 3 people
− Entire VMS V1 team was 24 people

• Keep the pressure up
− The first known “fact” about VMS was the schedule
− Beware of creeping elegance
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How to Build an Evolvable System
• Modularity
• Modularity
• Modularity
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Modularity in VMS
• Dynamically loaded modules for all configuration dependent components
• Huge number of system models and devices supported over the life of the 

system
• Any VMS system disk will boot on any configuration of a particular architecture
• New hardware is supported with minimal effect on the rest of the system
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Maintain Design Integrity
Causes of “software rot”
• Lack of design understanding
• Quick and dirty changes
• Changes that compromise the original design
• Functional extension without extending the original design
• Duplication of function
• Runaway complexity
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Maintain Design Integrity
• Document the design
• Well defined stable interfaces
• “Firewall” major modules – validate inputs
• Clean house – rewrite “worn out” components
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• X86 port
• New file system
• Ongoing modernization
• …

Ready For the Next Adventure…
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To learn more please contact us:
vmssoftware.com
info@vmssoftware.com
+1.978.451.0110

Thank You
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