
© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Open Source and UNIX
portability

Chinmay Ghosh

OpenVMS Engineering

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 2

Agenda

• Shared Stream IO (SSIO)

• PIPE

• BASH

• Miscellaneous

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 3

SETTING THE CONTEXT

Shared Stream IO (SSIO)

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 4

File System I/O

• Programs use file system APIs for file I/O

• OpenVMS traditional file system APIs

Record: SYS$OPEN, SYS$GET, SYSPUT, SYSCLOSE

Low level: IO$_ACCESS, IO$_READVBLK, etc

• OpenVMS supports POSIX APIs too

• POSIX APIs provided by library – CRTL

− open(), read(), write(), fsync(), close(), etc.

• CRTL uses OpenVMS native file system APIs

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 5

WHAT IS THE PROBLEM?

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 6

The problem

• On OpenVMS, concurrent POSIX write() calls to the same file can corrupt data
• POSIX I/O on OpenVMS not atomic

− Data updates can get lost

− Disk can get mixed data from overlapping writes

• Consistency not guaranteed for files opened for shared write

• Victims: UNIX programs ported to OpenVMS

• Programs must provide atomicity on their own

• Stated formally:

– OpenVMS does not provide POSIX-compliant shared read/write to byte stream files

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 7

Atomicity: OpenVMS and POSIX (1/2)

• OpenVMS is record-atomic

• POSIX is byte-stream-atomic

• Block I/O is not atomic
− Ultimately, all disk I/O is done this way

− Caller (file system) expected to manage concurrency

Record I/O Byte-stream I/O Block I/O

OpenVMS Atomic N/A Not atomic

POSIX N/A Atomic Not atomic

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 8

Atomicity: OpenVMS and POSIX (2/2)

• Byte-range I/O on UNIX
– UNIX FS converts byte-stream I/O to block I/O

– Provides atomicity, designed for this

• Record I/O via RMS
– RMS converts record I/O to block I/O

– Provides atomicity, designed for this

• POSIX I/O on OpenVMS
– CRTL converts byte-stream I/O to block I/O

– Design not geared to provide atomicity

– Buffers not system-wide or cluster-wide

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 9

OpenVMS file system layering

• CRTL
− victim of no-synch-for-block-I/O

• RMS
− provides synch transparently, but for record I/O only!

• XQP
− basic synch, user program must still do some synch

• XFC
− no API, no synch, parallel writes can mix

• IO subsystem
− no synch, parallel writes can mix

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 10

Example victim program

Process A:
fd = open(“x.dat”, O_RDWR, 0);

lseek(fd, 10, SEEK_SET);

write(fd, data1, 20);

Process B:
fd = open(“x.dat”, O_RDWR, 0);

lseek(fd, 400, SEEK_SET);

write(fd, data2, 20);

Block
no.50

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 11

Block I/O: Read-modify-write sequence

I/O is done in units of blocks, not bytes

To modify part of block:
– Read whole block (green)

– Modify desired bytes (blue)

– Write whole block (blue + green)

Proc A

Block # 50

read

modify

write

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 12

Proc A

Block # 50

Proc B

Block I/O: Lost update problem

read

read

modify

modify

write

write

A’s copy is in its memory

B’s copy is in its memory

Update by each is not reflected in
other’s copy

Fix? Share same buffer

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 13

Block I/O: Mixed data problem

Two processes do write

Write blocks 50, 51, 52

File system updates blocks on
disk

A third process reads

write()

A A A

File
System

A A A

B B B

A B B

A B B

?

read()

A

A A A

B B
?

 ?

write()

B B B
Correct results -
either AAA/BBB

Incorrect
results

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 14

Examples of Proc A and Proc B

• Competing writers
− E.g. transaction processing, database system

− Processes A and B attempt to update same ‘record’

• Workers with common parent
− ‘forked’ by common parent (e.g. smbd)

− Proc A writes to file; Proc B reads from same file

• Parent – child
− Processes A and B append to same log file via same FD

− Each is affected by the other’s EOF update

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 15

Impact of the problem

• More effort porting UNIX program to OpenVMS
– Extra coding by programmer to assure data integrity

• Performance is lower
– Extra code executed for synchronization

– Extra I/O done to disk – frequent calls to fflush

• Spend extra effort and get a slower program!

• One of the blockers for a conforming UNIX fork
– Parent – child sharing same FD

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 16

Impact: Specific examples

• Java (CIFS too) uses a work-around
− Does open+read/write+close for every read/write!

− Restores current file offset after each close+open

− Significant performance issue

• Oracle problem with log and trace files
− Single writer with multiple readers

• Apache’s use of log files sub-optimal
− V1.3 places restriction

− V2.0 uses a work-around

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 17

Key learnings

On OpenVMS application is responsible to provide atomicity for block I/O

– OpenVMS doesn’t guarantee atomicity for block I/O

Lost update problem:

– Process I/O buffers must be shared system-wide to avoid lost updates

Mixed data problem:

– Programs doing block I/O must synch among themselves to prevent mixed data

Today’s solutions:

– Flush after every write

– Exclusively-lock file when doing write

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 18

Solution - SSIO

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 19

How SSIO solves the problem

• Lost update problem:

– XFC provides the new API

– Programs pass byte-offset via new API

– New code in XFC to update only part of a block

• Mixed data problem:

– XFC will lock all affected buffers during block I/O

– Atomic up to SSIO_MAX_ATOMIC_IO bytes

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 20

SSIO components

• XFC
– Excellent buffer management, enhanced for byte-range

– Would provide new, byte-range I/O API

– Existing code for native OpenVMS I/O remains unchanged

• CRTL
– Would call new XFC API to do byte-range I/O

• RMS, XQP
– Minor, necessary changes to support SSIO operations

– RMS: SYS$OPEN, etc

– XQP: IO$_ACCESS, etc

– Supports current APIs with no behavior change

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 21

Current and proposed designs

Current design SSIO design

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 22

Additional benefit: Performance

• XFC could also provide performance boost

– Dirty data caching to avoid frequent writes

– Append optimization

– Caching dirty data after file close

– Fine-grained locking

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 23

What remains unchanged

• Existing APIs, options remain unchanged

• Applications using RMS, QIO APIs
– Will not need any code changes

– Will not see any behavior changes

• Applications using CRTL (POSIX) API
– Will continue to work without code changes

– Will run faster with new CRTL, with extra synch code removed

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 24

SSIO – V1.0 (Beta) release (1/2)

• Data consistency is guaranteed
– For shared access to non overlapping byte boundaries with in the same block

• Standalone implementation

• Write though cache

• Impacted CRTL APIs
– open(), create(), read(), write(), lseek(), Fcntl(), truncate(), ftruncate(), fsync()

• Supported record formats
– STREAM, STREAM_CR, STREAM_LF, UNDEFINED

• To Enable SSIO
– Use logical DECC$SSIO

– Use argument "fop=ssio‚ with open() or create()

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 25

SSIO – V1.0 (Beta) release (2/2)

• Requirements
– XFC Caching has to be enabled

– SSIO mode should not be mixed with NON SSIO mode

• Restrictions
– files to be opened and accessed in shared mode

– Define DECC$FILE_SHARING 1

– Use "shr=val,val,...‚ in create() and open() call

– Specify fop="ssio,cbt‚ in create() and open()

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 26

SSIO – upcoming release

• Cluster aware

• Performance Improvement

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 27

Benefits

• Porting becomes easier technically
– No writing of extra code to assure data integrity

• Customers get Open Source products quicker
– New product versions can be ported faster

• Faster performance of POSIX products
– Java, Oracle

– CIFS, CSWS, GNV, etc

• Reduced porting cost to HP, partners
– Lesser time, skills for porting

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 28

SSIO PROMOTES UNIX PORTABILITY

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 29

PIPE

• Unidirectional interprocess communication

• Has a read end and a write end

• Data written to the write end can be read from the read end

• No message boundaries

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 30

PIPE – current implementation

• pipe() is Implemented in CRTL using MAILBOX

• Maximum mailbox size = 64 KB

• Consumes S0 (32 bit) limited address space

Parent Child

MAILBOX

Write
Read

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 31

PIPE – Planned new implementations

• Use global section backed by page file
– Mapped to P2 space (64 bit address space)

• Use UNIX Domain Sockets

• Use 2 separate mailboxes
– One for data, other to notify

– Store data in P2 space when mailbox is full

– Reader will notify for more data using the 2nd mailbox

• Advantages
– Larger size, more than 64K

– Improved performance

– Compatible with UNIX/Linux

– Backward compatibility

– Doesn’t consume S0 space

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 32

PIPE – Using Global Section

 Parent

 Child

Create & map global section

Map global section

 write

 Read

00000000.80000000

FFFFFFFB.FFFFFFFF

Virtual address space

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 33

GNV BASH 4.2

• Based on GNU BASH 4.2

• Contribution from opensource community

• Available at http://h71000.www7.hp.com/opensource/opensource.html

http://openvms.compaq.com/OpenSource

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 34

GNV BASH 4.2 – New features (1/2)

Upgrade from GNV BASH 1.6

>100 new features and bug fixes
• External commands

− 2 ways to run external commands with $ or single quote

 badresult=$(./ex17.sh)

 goodresult=`./ex17.sh something`

 echo "\"./ex17.sh\" gave: $badresult"

 echo "\"./ex17.sh something\" gave: $goodresult‚

• supports \u and \U Unicode escape

• can dynamically load built-ins at run time

− Loaded using command ‚enable -f filename builtin-name‛

− Will speed up execution

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 35

GNV BASH 4.2 – New features (2/2)

• Negative array indices

• Negative parameter in string-extraction construct

• new `-g' option with declare/typeset to creates variables in the global scope in a shell

• `exec -a foo' now sets $0 to `foo‘

• Corrected permission problem with history file (.bash_history)

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 36

GNV BASH 4.2 – Restrictions

• Does not support for the 'fg' 'bg', and '&‘

• DCL fallback is not implemented

• Bash currently uses the same control characters as OpenVMS, Control-Z is EOF

• ulimit builtin command is only partially implemented

• "test -x‚ does not append ‚.EXE‛

− Supposed to retry by appending .EXE with filename

− Common practice to use filename without extension as hardlinks

− Compatibility issues with other test options

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 37

To become a GNV developer

Subscribe to mailing list: https://lists.sourceforge.net/lists/listinfo/gnv-develop

Send a mail to : hp-gnv-devlp@users.sourceforge.net

https://lists.sourceforge.net/lists/listinfo/gnv-develop
https://lists.sourceforge.net/lists/listinfo/gnv-develop
https://lists.sourceforge.net/lists/listinfo/gnv-develop
mailto:hp-gnv-devlp@users.sourceforge.net
mailto:hp-gnv-devlp@users.sourceforge.net
mailto:hp-gnv-devlp@users.sourceforge.net
mailto:hp-gnv-devlp@users.sourceforge.net
mailto:hp-gnv-devlp@users.sourceforge.net

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. 38

Miscellaneous

MAKE utility

PostgreSql

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Q&A

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Thank you

